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Abstract

As food systems become increasingly complex,
ensuring food safety is paramount. Traditional
methods for detecting food hazards often lack
transparency and interpretability, which are cru-
cial for practical applications. In this paper,
we present a novel neuro-symbolic approach
to food hazard detection, leveraging a combi-
nation of neural and symbolic models for en-
hanced explainability. Our method employs
CoCo-Ex to extract concepts from food recall
titles and maps them to ConceptNet nodes, fol-
lowed by filtering irrelevant nodes using the
Llama-3.1-8B-Instruct model. A streamlined,
context-specific sub-graph of ConceptNet is
constructed to establish relationships between
hazard/product labels and recall titles. By em-
ploying measures like distances between con-
cepts in ConceptNet, we build a hazard classifi-
cation system which is inherently explainable.
While initial results show room for improve-
ment compared to neural-only baselines, this
approach, with its superior performance in low-
data setting highlights the potential of integrat-
ing symbolic reasoning with neural models to
improve model transparency and performance
in food safety applications.

1 Introduction

Food safety is becoming an increasingly important
issue worldwide. As our food systems grow more
complex and interconnected, the risks of contam-
ination and food borne illnesses rise. Moreover,
with the rise of social media, there are a myriad
of food safety reports flooding the web that is dif-
ficult to sort through. Since this is a complicated,
unsolved problem, SemEval released a task called
The Food Hazard Detection Challenge, which is
designed to evaluate explainable classification sys-
tems for titles of food-incident reports collected
from the web. To solve this task, we propose a clas-
sification model that would be able to predict spe-
cific label categories, i.e. hazard(s), product(s) in-

volved in food recall titles from online sources. We
aim to create a highly explainable model that can
not only predict hazards and products that caused
those hazards, but a model that is also understand-
able. This transparency is crucial for trust and prac-
tical application in food safety. Given this need,
we turn to a neuro-symbolic approach to leverage
human reasoning and discretization which results
in a more interpretable model. The approach that
we propose for this uses a neural model, Coco Ex,
to extract meaningful concepts from the input food
recall titles and map them to nodes in Concept-
Net. We then filter out the irrelevant nodes using
Llama-3.1-8B. Lastly, we use the relevant nodes
to algorithmically generate a sub-network of Con-
ceptNet, a popular semantic network, which would
allow the parsed labels to be matched to the titles.

2 Related Works

(Zini and Awad, 2022) present a survey on the ex-
plainability of deep models in NLP by underlining
the importance of explainability in domains where
understanding the decision-making process is criti-
cal, which directly corresponds to our task of build-
ing an explainable food hazard detection model.
The authors focus on elucidating why explainabil-
ity is especially tricky when it comes to textual
data, supporting their claim with reasons such as
the opaque nature of word embeddings and the in-
herent interpretability of the attention mechanism
in transformers. The specific avenue that we would
like to consider building upon from this paper is
that of quantitatively assessing the explainability
of our model and its textual data.

The authors of (Assael et al., 2022) propose
Ithaca, a deep neural network architecture that can
perform the tasks of restoring ancient texts from
Greek inscriptions, in addition to also attributing a
place of origin and date of writing of the inscrip-
tion. We think that this is relevant because of its
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model-specific explanation, in which the authors’
claim that a "high-level of generalization is often
involved" (in epigraphy), resonates with the fact
that food risk classification often is not accompa-
nied by transparency. Their use of models that
perfectly fit the three tasks Ithaca excels at (text
restoration, geographical attribution and geograph-
ical attribution), suggests that such an approach
intends to enable the readers and the authors to not
only have a deeper understanding about the solu-
tion proposed, but also to reason about the structure
of the model. We will be building on a similar ap-
proach, albeit incorporating a symbolic approach
for the food hazard detection solution, where we
will leverage model-specific explanations.

In (Ribeiro et al., 2016), the main focus is to de-
velop a system that explains why a classifier made a
certain prediction, which is done by identifying the
important parts of the input that contribute towards
the decision making and presenting the visual arti-
facts that establish a relationship between the input
and the prediction. Since model-agnostic methods
do not take into account the model’s structure since
they work on a black-box approach, the authors in-
tend to develop Local Interpretable Model-agnostic
Explanations (LIME). The outlined drawbacks of
evaluating only the accuracy of the model (dataset
shift, cross validation overestimation and data leak-
age) to explain it’s performance are interesting,
since they can also be applied directly towards the
explainable food hazard detection model we will
be working on. Our proposed methodology takes
a slightly different approach, which is in being ex-
plainable right from the start, hence not needing an
approach to generate explanations using a separate
methods like the one the authors have proposed.

An attention based mechanism was deployed by
(Pavlopoulos et al., 2022) in context of toxicity de-
tection. One of the approaches they experimented
with in their work was a systematic application
of attention as a rationale extraction mechanism
which is applied at inference. This added a layer
of explainability to the problem of toxic label iden-
tification for text. Moreover, by applying a prob-
ability threshold to the attention scores for each
token of the post, they achieved impressive results
in the task of toxic sequence detection. While the
idea of analyzing the last layer of the models adds
some explainability to the approach, it doesn’t over-
come the black box nature of the internals of the
model. We intend to have more explicit symbolic
components that would be employed earlier in the

approach.
In an effort to build a system for early detection

of food hazards, a framework proposed by (Ihm
et al., 2017) aims at extracting information from
social media and online news. The authors propose
a multi step framework to extract, filter and process
data from multiple online sources. They employ
neural methods at the document filtering stage fol-
lowed by rule based methods to fill the food hazard
event templates prescribed by the Korean govern-
ment. This task that authors address is similar to
our proposed task. However, the strictly rule-based
approach for extracting information comes with its
own set of challenges. This can often cause missed
fields leading to incomplete information. A hybrid
approach will attempt to overcome this limitation.

(Tao et al., 2021) propose an approach in extract-
ing entities related to food-borne outbreaks from
twitter posts. They develop a dual-task BERTweet
model to a) classify tweets and b) extract entities
related to the outbreak. They modify the architec-
ture of BERTweet model for the proposed tasks
and achieve state of the art performance on the
first task and a high precision on the second task.
Though this seems impressive, their approach re-
mains purely neural and lacks explainability. We
intend to use a similar BERT-based baseline for our
work, with our symbolic component remaining a
key differentiating factor.

(Becker et al., 2021) introduces a concept extrac-
tion tool for ConceptNet called CoCo-Ex, which
identifies and extracts concepts from natural lan-
guage texts and maps them to ConceptNet. It can
be used as a way to detect and classify knowledge
relations instantiated within texts. We use CoCo-
Ex for our task to extract relevant keywords from
the input recall titles and labels.

3 Dataset

The training dataset (Randl et al., 2024) comprises
of 5082 instances of textual data, ranging from 5
to 277 characters in the food recall titles. It also
contains the text from these articles. The food
recall titles are manually labeled from food safety
authority agencies with the relevant hazard, hazard-
category, product and product-category.

On analyzing the data, some keen observations
that will shape how we build the framework moving
forward are presented below:

1. The data also includes the features such as
the release date of the food recall article,
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Figure 1: Distribution of product categories in the
dataset. The ’Other categories’ is purely indicative of
other named product categories.

and ’hazard-title’/’product-title’ which are the
spans of the food recall title that are relevant
to the classification at hand. These spans are
generated via a Logistic Regression classifier
based on feature importance.

2. Out of the 127 hazards in total, it contains 2
hazards which only have one title associated
with them, meaning that the dataset has only
one title example for these specific hazards.

3. The dataset also contains titles that are re-
peated (one title is repeated 11 times)

4. A popular product-category is meat, egg and
dairy products, as can be seen in Figure 1.

Presence of hazards with single/few examples is
a challenge for neural approaches as it doesn’t pro-
vide the model with enough information for train-
ing. The neural approach loses on the information
present in the label name and simply uses it as a
category which is something knowledge-enriching
approaches can leverage to their advantage. Hence,
we propose a Neuro-symbolic framework that lever-
ages knowledge graphs to reason about the classifi-
cation task.

4 Background Information : Models

The modules used for our framework are CoCo-Ex,
Llama, and ConceptNet. We outline the overview
for each of these modules prior to detailing about
the pipeline of our framework.

4.1 CoCo-Ex
CoCo-Ex (Becker et al., 2021) is a tool for extract-
ing concepts from texts and linking them to the

ConceptNet knowledge graph. Their methodology
begins by extracting candidate phrases from the
given text using the Stanford Constituency Parser,
which are then preprocessed with Spacy, where
lemmatization is applied. Following preprocess-
ing, the types of the candidate phrases are matched
against a dictionary based on ConceptNet, utilizing
word embeddings for semantic similarity. We use
CoCo-Ex (suggested settings in the paper) to create
candidate nodes for each concept (title/label) in our
pipeline.

4.2 LLaMA

LLaMa (Grattafiori et al., 2024) is a collection of
foundation language models with various amounts
of parameters. For this task, we use the Llama-3.1-
8B-Instruct model which has 8 billion parameters.
We primarily use it to filter the candidate nodes
generated by CoCo-Ex.

4.3 ConceptNet

ConceptNet (Speer et al., 2018) is an open, multi-
lingual knowledge graph that contains nodes that
model concepts (single or multiple words) and la-
beled edges that model relations. Some example
relations are "is a", "is used for" and "part of". Con-
ceptNet 5.7 contains a total of 36 relations, which
include both symmetric and asymmetric relations.
We primarily use ConceptNet to judge the distances
between different "Concept clusters" and assign a
category to each title.

5 Methodology

Our method to addressing the classification prob-
lem is comprised of three components, as shown in
Figure 2. The goal is to map each of the food re-
call titles with the correct product/product category
and hazard/hazard category labels. There are 22
possible product categories and 10 possible hazard
categories. There are 1,005 specific products and
116 specific hazards.

We approach this problem by passing two in-
puts into our neuro-symbolic pipeline: the food re-
call titles and the labels, independently. These get
passed initially into CoCo-Ex, which extracts mean-
ingful concepts from the input and maps them to
conjunct concept nodes in ConceptNet. However,
many of these nodes are unnecessary/misleading
(The phrase "Peanut butter" being processed into
"Peanut", "Butter", "Peanut butter") for our spe-
cific task, so to further narrow down the nodes to
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Figure 2: Diagram of our model’s architecture, broken up into three parts. Part (a) depicts the inputs, which are both
the titles of the food recall notifications as well as the predicted labels. Part (b) details the neural component of
our model which shows how we create relevant nodes from the input text. Part (c) shows how we convert the text
classification problem into a graph and use BFS to traverse the edges.

just the relevant one, we use the Llama-3.1-8B-
Instruct model with the prompt "For given text and
extracted candidate keywords, discard the irrele-
vant ones and return the relevant ones." This part
of our pipeline returns a set of relevant ConceptNet
nodes for every label and every title.

From these nodes, we are able to use ConceptNet
(v5.7) to establish connections between the label
groups and the titles. However, the problem with
using ConceptNet is that it includes over 21 million
edges and over 8 million nodes. Including too many
nodes would bring given any two concepts closer,
thereby taking away from the informative nature
of the distance metric. Moreover, making a large
number of API calls makes traversing the graph
extremely slow.

To circumvent these issues, we create a lite ver-
sion of ConceptNet, essentially by building an of-
fline sub-network of ConceptNet. To do this, we
prune ConceptNet by limiting the nodes to the En-
glish language, and at the same time, limit the num-
ber of relations used. As described above, Concept-
Net has 36 relations between nodes. For the given
classification task and its domain, we found that us-
ing the relations FormOf, Synonym and RelatedTo
gave us best results. FormOf relation connects dif-
ferent forms of the same word (meat and meats,
oil and oils, etc.). The Synonym relation is useful
in ensuring coverage as the same term might be
referred to by different names in different concepts
(poultry and chicken). We aim at encapsulating
all other relations in the network using the Relat-

edTo relation which allows us to ignore other fine
grained relations, as their granularity can add to the
complexity while not necessarily improving perfor-
mance. Curating the edges of ConceptNet gives
us control over the size and the complexity of the
sub-network that we run queries over.

After the sub-network curation, we proceed to
form sub-graphs for each label. We use Breadth
First Search (BFS) to keep track of all the nodes
present within "n" hops from a given label. Since a
given label can amount to multiple concepts ("Cof-
fee and Tea"- "Coffee", "Tea") we use multi source
BFS to keep track of neighbors of a given label-
cluster. After experimentation, we set "n" (the least
number of hops from the source nodes) to the op-
timal value of 5. As show in Figure 2 part(c), we
group each of the nodes associated with each label
in a cluster (depicted by the blue squares). For each
label cluster, we calculate the distance to each title
node, and choose the label that outputs the mini-
mum distance (In our experiments we found that
this performs better than other aggregation tech-
niques like averaging). As can be seen in 2, label
3 is the predicted category, since it has the short-
est path (distance 1) to one of the title nodes. This
process is iteratively run over the 4 label categories.

An algorithm of this approach is provided in
Algorithm 1

6 Evaluation Metrics

We evaluate our approach by measuring its perfor-
mance on each task by calculating the macro-avg-
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Algorithm 1 Food Hazard Classification Pipeline

Require: Titles dataset T , Label categories dataset
L, ConceptNet C

Ensure: Classified titles into hazard and product
categories

1: Step 1: Convert ConceptNet to a Graph
2: Step 2: Extract Keywords
3: for each title t in T do
4: Use LLaMA to extract keywords from t
5: end for
6: for each label category l in L do
7: Use LLaMA to extract keywords from l
8: end for
9: Step 3: Filter Keywords

10: Step 4: Perform Multi-Source BFS
11: Define max distance d
12: for each start node n in T and L keywords do
13: Perform BFS up to depth d from n on G
14: Record distances of all reachable nodes
15: end for
16: Step 5: Generate Subgraphs
17: for each label category l in L do
18: Create subgraph S of G containing nodes

within d of keywords in l
19: Store S
20: end for
21: Step 6: Classification
22: for each title t in T do
23: Compute distances of t’s keywords to haz-

ard and product subgraphs
24: Assign t to the category with the minimum

distance
25: end for
26: Step 7: Evaluation
27: Compare model predictions against ground

truth labels in L
28: Use evaluation metrics to evaluate perfor-

mance

F1-score on the predicted labels using the anno-
tated labels as ground truth. Our model’s results
are compared to the performance of the baseline
model — BERT (randlbem, 2024).

7 Results and Discussion

We evaluated the performance of our proposed
framework on a subtasks involving four labels, haz-
ard category, product category, hazard, and product.
The results were compared against the baseline
provided by the SemEval 2025 (randlbem, 2024)
task authors. The precision, recall and F1 scores

are summarized in Table 1. For the hazard label,
our framework shows an improvement over BERT
in precision and recall, the slight drop indicating
a slight trade-off in the balance of precision and
recall.

For the product label, our framework signifi-
cantly outperformed BERT in both precision and
recall.

The results indicate that while our framework
introduces improvements over the baseline in spe-
cific metrics, the overall performance seems to be
limited due to a variety of factors:

1. Label Space Inflation: One significant chal-
lenge in this study was the labeling scheme
of the dataset. Several products, which are
either highly similar or essentially identical
are treated as distinct labels. For example,
spice mix, spices, mixed spices, spice mix-
ture, masala spice mix, masala spice mixture,
and spice marinade are all separate product la-
bels. This adds unnecessary complexity since
many of these terms are almost semantically
identical and hampers the symbolic compo-
nent’s ability for the task of title classification.
It’s real world application also seems to offer
little to no value. This is also evident in one
more set of labels involving spinach: spinach,
spinach leaves, baby spinach, canned spinach,
and frozen spinach.

2. Inadequacy of links in ConceptNet: An-
other challenge we faced in our proposed so-
lution was linked to nodes that are not well
represented in ConceptNet, specifically within
the English part. We found that for multi-
ple instances ("baking mix", "smoked ham",
"staphylococcal enterotoxin", etc.,) there are
no links available to other english language
concepts. This limits the representation of
a label or sometimes completely eliminates
a label from being present in our sub graph;
causing no input examples to be attributed to
that label. While it is a reasonable expectation
to have such concepts well connected within
english ConceptNet, we hope that such limita-
tions will be addressed in subsequent versions
of ConceptNet.

8 Conclusion and Future Work

The Food Hazard Detection Challenge is a clas-
sification task aimed at predicting specific prod-
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Task Predicted Label Precision Recall F1-score

BERT
Hazard 0.22 0.19 0.19
Product 0.02 0.04 0.02

Ours
Hazard 0.25 0.22 0.15
Product 0.11 0.12 0.09

Table 1: Comparison of performance metrics for the
BERT model and our proposed method for the products
and hazards.

Task Predicted Label Precision Recall F1-score

BERT
Product-Category 0.57 0.58 0.57
Hazard-Category 0.68 0.59 0.61

Ours
Product-Category 0.23 0.17 0.15
Hazard-Category 0.14 0.19 0.11

Table 2: Comparison of performance metrics for the
BERT model and our proposed method for the product
and label categories.

ucts/product categories and hazards/hazard cate-
gories for food recall titles. We proposed a neuro-
symbolic graph-based classification model that is
explainable and provides better performance than
the baseline on some of the tasks.

The superior performance of our method in the
product classification task (1,256 labels) and com-
petitive performance in hazard classification (261
labels) makes a strong case for neuro-symbolic
approaches, especially in low-data regimes. We
believe that this is because of our method’s fo-
cus on leveraging the information encoded in label
names—as opposed to standard BERT based classi-
fication which completely ignore this information.

Our method involved using CoCo-Ex to create
nodes from the given inputs and filter out the ir-
relevant ones using Llama and create a graph us-
ing these nodes as vertices and the edges as rela-
tions from our ConceptNet sub-graph. We then
performed a BFS on the graph to calculate the dis-
tance from label clusters to specific titles. Our
results showed that our neuro-symbolic approach
was able to mostly predict specific products and
hazards better than the baseline, while also succeed-
ing in being more explainable in its implementation
and working.

Future work includes swapping the 8 billion pa-
rameter Llama model for the model Llama-3.1-
70B-Instruct, which contains 70 billion parameters.
In addition, while we are using this pipeline specif-
ically for food classification, this will work for any
text-based classification problem. Generalizing our

pipeline for future domains would be a valuable
next step. As discussed earlier, current version of
ConceptNet is not without limitations. Hurdles
like English phrases constantly referring to phrases
in other languages come naturally with usage of
ConceptNet. The authors believe that, as the rudi-
mentary tools for implementing symbolic concepts
in neural models improve, so will the performance
and the explainability of neuro-symbolic models.
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